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Many complex systems obey allometric, or power, laws y=Yxa. Here y�0 is the measured value of some
system attribute a, Y �0 is a constant, and x is a stochastic variable. Remarkably, for many living systems the
exponent a is limited to values n /4, n=0, ±1, ±2,…. Here x is the mass of a randomly selected creature in the
population. These quarter-power laws hold for many attributes, such as pulse rate �n=−1�. Allometry has, in
the past, been theoretically justified on a case-by-case basis. An ultimate goal is to find a common cause for
allometry of all types and for both living and nonliving systems. The principle I−J=extremum of extreme
physical information is found to provide such a cause. It describes the flow of Fisher information J→ I from an
attribute value a on the cell level to its exterior observation y. Data y are formed via a system channel function
y� f�x ,a�, with f�x ,a� to be found. Extremizing the difference I−J through variation of f�x ,a� results in a
general allometric law f�x ,a��y=Yxa. Darwinian evolution is presumed to cause a second extremization of
I−J, now with respect to the choice of a. The solution is a=n /4, n=0, ±1, ±2…, defining the particular
powers of biological allometry. Under special circumstances, the model predicts that such biological systems
are controlled by only two distinct intracellular information sources. These sources are conjectured to be
cellular DNA and cellular transmembrane ion gradients
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I. FISHER INFORMATION

Fisher information I is defined by the following problem
of estimation. An unknown attribute value a of a system is
measured as a data value y. The system’s likelihood law
p�y�a� is known. How well can a be estimated on the basis of
y? Assume that the estimate is to be unbiased. Then the mini-
mum possible mean-squared error of any such estimate is
1/ I �1,2�, where

I � I�a� � �� �

�a
ln p�y�a�	2


y

, I � 0. �1a�

The notation � �y means the expectation over all possible data
values y �see also Eq. �6��. As indicated, I is positive by
construction, and the dependence upon the datum y is aver-
aged out, leaving only a dependence I�a� upon the attribute
value a. Thus the information depends upon all possible y,
and is a system property. Also note the reasonable tenden-
cies: As the information becomes larger, the minimum error
1 / I becomes smaller, etc. In its multidimensional form �3,4�,
I measures system complexity as well �Sec. IV�.

Information I�a� is that in the data. This is to be distin-
guished from a second type of Fisher information, denoted as
J�a�, which is the amount that originates at the source of the
data. Thus, any observation results from a flow

J�a� → I�a� �1b�

of information from source to data. This flow of information
is the basis for the extreme physical information �EPI� varia-
tional approach �2� discussed further below.

Knowledge of the likelihood law p�y�a� allows I �by Eq.
�1a��, and hence the minimum possible error, to be known.

This minimum error can be compared, as a benchmark, with
that expected from any proposed estimation approach. This
has been the traditional use of information I since about
1922 �1,2�.

However, the information I�a� is currently being used in a
different way—to determine the scientific law that is obeyed
by a complex system. The law defines the system through the
probability density functions �PDFs� p�y�a� or probability
amplitudes that characterize the system. The system is of a
general nature �physical, biological, economic, etc.�. For this
purpose, Fisher information I�a� ,J�a� is used in the principle
of “extreme physical information” or EPI. This is a varia-
tional principle �Sec. II� whose output is the sought-after law
that governs the system �3,4�. An example is the Schrödinger
wave equation governing the probability amplitudes of a
quantum-level system.

II. SYSTEM AS INFORMATION CHANNEL

Consider a system consisting of a source effect specified
by an attribute value a, an instrument for observing it �via
probe particles�, and the output space consisting of a datum y
from the instrument. This defines an “information channel.”
Such a system is defined by its likelihood law p�y�a� and any
relations among its variables y ,a. The general aim of EPI is
to determine the likelihood law and these relations. To facili-
tate finding these, the observing instrument is assumed to be
ideal and noise-free.

In general, information is lost in transition from source
level J to data level I. However, data tend to at least approxi-
mate their ideal �system� values, so that the loss of informa-
tion tends to be minimal. Indeed, otherwise the act of obser-

PHYSICAL REVIEW E 72, 036101 �2005�

1539-3755/2005/72�3�/036101�10�/$23.00 ©2005 The American Physical Society036101-1

http://dx.doi.org/10.1103/PhysRevE.72.036101


vation would be pointless. Hence the principle

I − J = extremum, where I � I�a�, J � J�a� ,

J � 0, I = �J ,

� = ��a� = const, 0 � � � 1. �2�

This is called the principle of extreme physical information
�EPI�. By �2�, ��a�� I�a� /J�a� is a function of a and is as-
sumed to be constant. For further details on the origins of the
EPI principle, see the article �3� or the books �4�.

III. ALLOMETRIC SCALING LAWS

Note: We use the terminology “allometry,” “allometric
scaling laws,” “scaling laws,” and “power laws” interchange-
ably for Eqs. �3a� and �3b�.

A. General allometric laws

Allometric power laws have a general form

yn = Ynxan, an = const, n = 0, ± 1, ± 2,…, ± N ,

yn,Yn � 0, 0 � x � � . �3a�

These are simple power laws, where each member of an
attribute class n obeys the same power law. The laws de-
scribe, to a good approximation, certain living and nonliving
systems. In general, n defines an nth class of observed at-
tributes yn�yn1 ,yn2 ,… ,ynKn

of a system. Also, Yn

�Yn1 ,Yn2 ,… ,YnKn
is a corresponding vector of constants,

and Kn is the number of attributes in the class. Thus there is
a total of K�
nKn attributes over all classes. Quantity x is
an independent variable of a system that is sampled for one
of these attributes. The powers an in �3a� are empirically
defined values of the various attributes and are regarded as
ideal identifiers of these. The an are generally dimensionless
numbers such as 2/3, 0.7, etc. Current approaches for ex-
plaining general allometry are “self organized criticality”
�SOC� �5�, Lande’s model �6�, the scale-free �SF� network
property �7�, and others �5�.

B. Biological allometric laws

Likewise, there are many living systems that obey allom-
etry �8–17�,

ynk = Ynkx
an, an = n/4, n = 0, ± 1, ± 2,…, ± N ,

k = 1,2,…,Kn, ynk,Ynk � 0. �3b�

Here x is specifically the mass of the organism, and the di-
mensionless powers an identify attributes of the organism.
Remarkably, each power is always some integer multiple of
1/4. Why this should generally be so, both within individu-
als and across different species, is a great mystery of biology
�9�, and is addressed by this paper. Living systems have “ex-
traordinary” complexity, and in fact are reputed to be “the
most complex and diverse physical system�s� in the uni-

verse” �9�. This suggests that EPI—which applies to com-
plex systems—is applicable to derivation of these allometric
laws.

Note that the same power n /4 describes all Kn members
of an nth class of attributes. For example, the class n=−1 has
currently K−1=2 known attributes, consisting of the observed
heart rate and observed RNA concentration of the organism.
The dynamic range of mass values x in �3b� by definition
includes mass values that extend from some �unknown� very
small and finite value to some �unknown� very large and
finite value. Indeed, for the attribute n=3 of metabolic rate,
the dynamic range of x over which �3b� is known to hold
currently exceeds 27 orders of magnitude �8,9�.

Allometric laws �3b� describe both individual and collec-
tive properties of animals. Some examples are as follows.
The attribute class n=−1 mentioned above obeys a power
a−1=−1/4. The class n=3 has K3=1 member defining meta-
bolic rate and obeys a power a3=3/4. Equation �3b� even
holds for a class n=0, i.e., where the attributes do not vary
with mass. An example is hemoglobin concentration in the
blood, which does not vary appreciably with body �or mass�
size. Other examples �9� are “metabolic rate, life span,
growth rate, heart rate, DNA nucleotide substitution rate,
lengths of aortas and genomes, tree height, mass of cerebral
gray matter, density of mitochondria, and concentration of
RNA.” This list of K=11 attributes only scratches the sur-
face.

C. On models for biological allometry

Although many biological attributes obey the quarter-
power law �3a� and �3b�, many do not �e.g., attributes that
are the square roots of attributes that do�. Nevertheless, many
models exist for explaining cases of biological allometry
�6,8–13�, as conveniently summarized in �9�.

However �9�, these models are lacking in not providing a
unified approach to calculating the attributes. Instead, they
were “designed almost exclusively to understand only the
scaling of mammalian metabolic rates, and do not address
the extraordinarily diverse, interconnected, integrated body
of scaling phenomena across different species and within in-
dividuals … Is all life organized by a few fundamental prin-
ciples?”

A general approach would also have to predict circum-
stances where allometry will not occur. A step in this direc-
tion is to find a model that establishes the necessity for al-
lometry of all types, biological and nonliving. That is, it
would show that

If a given attribute obeys the model,

then it must obey allometry. �3c�

We next form such a model. This dovetails with the use of
EPI, which likewise requires a model.

IV. PRIOR KNOWLEDGE

The high degree of complexity in allometric systems en-
courages us to attempt to derive the laws �3a� and �3b� by the
use of EPI. Indeed EPI has been successfully used in a wide
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range of amplitude-estimation problems �3,4,18–25� for
complex systems. Its success probably traces back to its basis
in Fisher information �1a�, which is both a measure of com-
plexity �26,27� and has other important physical properties
�28,29�.

All uses of the EPI principle require prior knowledge of
one or more invariances. Their general aim is to define the
information functional J�a�. In this problem, the aim is to
form a J�a� that somehow represents the full range of bio-
logical and physical attributes a�an that obey laws �3a� and
�3b�. What can such a broad range of effects have in com-
mon? One property is that of originating on the microlevel of
biological cells or unit cells. Another is asymptotic behavior
near the origin. The following summarizes these properties.

�i� For all systems, information J�a� originates on the dis-
crete microlevel. For example, in nonliving systems such as
regular crystals or irregular polymer chains, the sources are
the unit cells or individual molecules, respectively. Likewise,
in a living system, biological cells are the ultimate sources of
information about a biological attribute a.

The information J�a� is assumed to propagate as a super-
position of plane waves, from a subset of cells and cell
groupings to the observer. These waves originate at a “unit
cell” �a=1 of a space. �See alternative �v� below.� The dis-
crete nature of the “cell sources” will be essential to the
calculation. See Secs VII A and VII B. The model will also
make some useful predictions on biological sources of the
information �Sec. XII�.

�ii� The allometric laws obey certain asymptotic behav-
iors near the origin, as expressed next.

Differentiating either allometric law �3a� or �3b� shows
that any one allometric law �suppressing indices n ,k� obeys

dy

dx
→ � as x → 0 for a � 1, but �4a�

dy

dx
→ 0 as x → 0 for a 	 1. �4b�

In words, the rates of increase of certain attributes increase
without limit, while others decrease without limit, as organ-
ism size x approaches zero. Since the size can never equal
zero �as mentioned above�, the trends are mathematically
well defined. They also are intuitively reasonable in many
cases. Hence we make these a general requirement of our
solution as well. Properties �4a� and �4b� are used in Secs.
IX A and IX E.

�iii� In general cases �3a� of allometry, the powers an are
regarded as a priori fixed numbers of unknown size �the view
taken by classical estimation theory �1��. These do not gen-
erally extremize �2�. This property is used in Sec. IX E.

However, in specifically biological cases �3b�, the an are
presumed to be optimal in extremizing principle �2�. That is,
Darwinian evolution forces a progressive drift of organismal
attributes toward those values which confer maximal fitness
on the organism. This model property is used in Secs. VIII C
and IX E. Maximal fitness is taken to be achieved by those
attribute values a that extremize principle �2� �see Sec. XII�.

�iv� �Only� in biological cases �3b�, the independent vari-
able x is the mass of the organism. That is, laws �3b� are
scaling laws covering a range of sizes, where the sizes are
specified by mass values x. Why specifically “mass” is dis-
cussed in Sec. XII. In nonliving systems, the nature of x
depends upon the system.

�v� �Only� in biological cases �3b�. Alternative to the
unit-cell assumption �i� of �a=1, more generally allow �a
=L, some unknown constant. L should be fixed by some
reasonable biological requirement. For example, the identifi-
cation of the an with pure numbers requires that one be fixed
as a boundary condition. Then let a1�1/4. In Sec. X, it is
found that on this basis L=1 as before.

Note that these model assumptions are not in themselves
sufficient to imply the allometric laws. For example, laws
�3a� and �3b� with x incorrectly replaced by sin�x� would still
satisfy requirements �4a� and �4b� of �ii�.

Finally, not all systems obey allometry Eqs. �3a� and �3b�.
Therefore, such systems do not obey this model by the ne-
cessity condition �3c� above. This is further discussed in
Sec. XII.

V. MEASUREMENT CHANNEL FOR PROBLEMS

The EPI principle will be applied to both living and non-
living systems. Thus, the measurement channel described
next is, in general, that of either a living or a nonliving
system. However, for definiteness, biological terminology is
often used.

A. Measurement, system function

In general, the measured value y of an attribute a is a
function

y = Cf�x,a�, − � � a � + � , �5�

for some constant C and some deterministic function f . The
latter is called the “system” or “channel” function. The chan-
nel function defines how an attribute value y results from a
corresponding class of attribute value a and a random source
effect x within the system. Here x is a random value of the
mass of a randomly chosen system �a biological creature or a
nonliving system such as a polymer�. The source variable x
obeys some unknown and arbitrary probability law pX�x�. Its
details will not matter to the calculation.

The overall aim of this use of EPI will be to find the
constants C and the channel functions f�x ,a� in the presence
of any fixed but arbitrary PDF pX�x� for the mass x. Hence,
the functions f�x ,a� will be varied to achieve the extremum
that is required in Eq. �2�. The system function will turn out
to be the allometric law �3a� and �3b�. In biological cases, the
attribute value a will be further varied to extremize I−J in
Eq. �2�. The solution will equal n /4 for values of n
=0, ±1, ±2,… .

The particular form of the system function f defines the
physics of the particular channel. As a simplistic example,
for some channels not considered here, f�x ,a�=a+x. This
would be the familiar case of additive noise corrupting a
signal value.
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B. Some caveats to EPI derivation

It should be noted that past use of EPI has been through
variation of the system PDFs or amplitude functions, not
through variation of their system function f�x ,a� as proposed
here. The success of the approach in a wide range of
amplitude-estimation problems �3,4,18–25� implies that sys-
tems in general obey EPI through variation of their PDFs or
amplitude functions. However, it is not known at this point
whether systems as well obey EPI through variation of their
channel functions. The derivation below will be positive in
this regard, i.e., will show that if a system obeys EPI on this
level, and also the model of Sec. IV, then it obeys allometry.

In the next two sections, we proceed to form the informa-
tion functionals I�a� and J�a�, and then use them in the EPI
principle �2�.

VI. DATA INFORMATION I

We first evaluate the information I�a�. The aim is to relate
I�a� to the unknown system function f�x ,a�, so that the EPI
principle �2� can be implemented through variation of f�x ,a�.

From Eq. �1a�, the average over y explicitly gives

I = I�a� =� dy p�y�a�� �

�a
ln p�y�a�	2

. �6�

This takes the more specialized form �11�, as shown next.
Since x is random, Eq. �5� actually represents the trans-

formation of a random variable x to a random variable y.
Therefore, elementary probability theory �30� may be used to
connect the respective probability laws pX�x� and p�y�a�, as

p�y�a�dy = pX�x�dx, dy 	 0, dx 	 0. �7�

We used pX�x�a�= pX�x� since, as previously discussed, a
mass value x is selected independently of the choice of at-
tribute. By �5�,

dy

dx
= Cf��x,a� , �8�

where the prime denotes � /�x. Combining Eqs. �7� and �8�
gives

p�y�a� =
pX�x�

C�f��x,a��
. �9�

This is to be used in Eq. �6� to form I. First, taking a loga-
rithm and differentiating gives

�

�a
ln p�y�a� = −

�

�a
ln�f��x,a�� . �10�

Conveniently, both pX�x� and the constants C have dropped
out. Using the results �7� and �10� in Eq. �6� gives

I =� dx pX�x�� �

�a
ln�f��x,a��	2

. �11�

That is, the averaging � � is now explicitly over the random
variable x. Also, I is now related to the unknown function
f�x ,a�, as was required.

VII. SOURCE INFORMATION J„a…

A. Microlevel contributions

Recalling the model assumption �i� of Sec. IV, J�a� origi-
nates at the cell level. In general, some cells and cell groups
contribute independently, and others dependently, to J�a�.
Then, by the additivity property of Fisher information �4�,
the total information J�a� is simply the signed sum of posi-
tive and negative information contributions from the inde-
pendent cells and cell groupings of the organism. A well-
behaved function J�a� can of course be represented over a
limited a interval by a Fourier series of such terms. What
interval size should be used?

Here we use model assumption �i� �Sec. IV� of a unit
interval. A unit interval of a space seems reasonable from
various viewpoints. First, it is fundamental to many physical
effects, such as in solid-state physics, where the number of
degrees of freedom per unit energy interval is of fundamen-
tal importance. Second, a unit interval is certainly the sim-
plest possible choice of an interval, and hence preferred on
the basis of Occam’s razor.

The alternative model assumption �v� �Sec. IV� of a gen-
eral interval size �a=L is taken up in Sec. X.

B. Fourier analysis

In Sec. IV, item �i�, the information J�a� was modeled as
propagating waves. This can be substantiated. Heat or en-
tropy propagates via plane-wave Fourier series �31,32�.
Fisher information J�a , t� is, like entropy, a measure of dis-
order, monotonically decreasing with an increase in time t
�3,4,20�. Moreover, both the flux of heat/disorder �32� and
the flow of information J�a , t� obey Fokker-Planck equa-
tions. We assume steady-state boundary conditions so that
J�a , t�=J�a�. �The attributes supply information at a constant
rate in time.� The general solution of this Fokker-Planck
equation over a unit interval of a �as above� is a simple
Fourier series �31,32�,

J�a�
0�a�1

= 

m

Fmexp�2
ima� ,

Fm = �
0

1

da�J�a��exp�− 2
ima�� ,

J�a� � 0, i = �− 1. �12a�

However, this series is inadequate for our purposes. First,
Eqs. �3a� and �3b� hold over an infinite range −��a�� of
attribute values, not only over a unit interval. Second, we
expect function J�a� to be an even function,

J�a� = J�− a� , �12b�

since there is no reason to expect a negative attribute value to
provide more information than its corresponding positive
value. One way to accomplish the range −��a�� is to
form the Fourier series for J�a� over a sequence of sym-
metrically placed, half-unit interval pairs �−1/2�a�0� and
�0�a�1/2�; �−1�a�−1/2� and �1/2�a�1�; etc. These
are denoted as
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a = ± � j

2
,
j + 1

2
�, j = 0,1,2,… . �12c�

Each interval number j defines in this way a total unit inter-
val for a, as required. The half-unit intervals �12c� are con-
tiguous and span all of a space. The J�a� for each interval
obeys �31�

J�a�
±„j/2,�j+1�/2…

= 

m

Bmj exp�4
ima�, J�a� � 0,

Bmj = 2�
j/2

�j+1�/2

da�J�a��exp�− 4
ima��, j = 0,1,2,… .

�12d�

Thus each value of j identifies an interval over which J�a� is
defined by a distinct set of Fourier coefficients Bmj, m
=1,2 ,… . Since these intervals �12c� are contiguous and
span a space, the resulting J�a� is defined over all a space as
required. The factors 4 in the exponents, which will prove
decisive, arise because each a� integration �12d� is over an
interval of length 1/2 �rather than 1 as in �12a��.

This simplifies further. Because each J�a� is an informa-
tion and therefore real, Eq. �12d� becomes

J�a�
±„j/2,�j+1�/2…

= 

m

Bmj
�Re� cos�4
ma� − 


m

Bmj
�Im� sin�4
ma� ,

j = 0,1,2,… , �12e�

where �Re� and �Im� denote real and imaginary parts.
Requirement �12b� of symmetry can only be obeyed if

generally Bmj
�Im�=0 for all m, so that

J�a�
±„j/2,�j+1�/2…

= 

m

Amj cos�4
ma�, Amj � Bmj
�Re�,

j = 0,1,2,… . �12f�

Next, using Bmj
�Im�=0 and that J�a�� is real in the second Eq.

�12d� indicates that

Bmj = 2�
j/2

�j+1�/2

da�J�a�� cos 4
ma� = Bmj
�Re� � Amj,

j = 0,1,2,… . �12g�

By Eq. �2�,J�a�must obey positivity �3,4�. Therefore, the co-
efficients Amj must be constrained to give positive or zero
values J�a� at all a.

VIII. PARTICULAR EPI PROBLEM

For generality of results, in the analysis that follows we
will regard the cellular contributions Amj in �12f� as arbitrary,
except for causing symmetry �12b� and positivity �12d� in
J�a�.

Using the particular information �11� and �12f� in the gen-
eral EPI principle �2� gives a problem

I − J =� dx pX�x�� �

�a
ln�f��x,a��	2

−� dx pX�x�

m

Amj cos�4
ma� = extremum,

j = 0,1,2,… . �13�

Here a choice of a defines 1:1 a choice of interval j, via Eq.
�12c�, and therefore a choice of coefficients Amj, m
=1,2 ,… . For mathematical convenience, we appended a
multiplier of 1 �a normalization integral �dx pX�x�� to the
second sum J.

As discussed in Sec. V A, we seek the channel functions
f�x ,a� and �in biological cases� the system parameters a that
extremize �13�, in the presence of any fixed source PDF
pX�x�. Accordingly, the extremum in the principle �13� is first
attained through variation of functions f�x ,a� and then, in
biological cases, through the additional variation of param-
eters a. The mass PDF pX�x� is not varied, and turns out not
to affect the answer. Thus, the channel is optimized in the
presence of a given source.

A. Synopsis of the approach

The basic approach consists of three overall steps, as car-
ried through in Sec. VIII B–Sec. IX E.

�i� The information flow I−J is extremized through
choice of system function f�x ,a�, in the presence of any
fixed PDF mass law pX�x�. This gives a general power law
for its derivative �f�x ,a� /�x� f��x ,a�,

f��x,a� = h�x�a−1, a real �14a�

�Eq. �20��. Quantity h�x� is some unknown base function of
x.

�ii� The base function h�x� is found, by further extremiz-
ing I−J with respect to it, giving h�x�=b1x �Eq. �38��. Using
this in �14a� gives

f�x,a� = xa �14b�

�Eq. �42�� after an integration. An irrelevent constant is ig-
nored. By Eq. �5�, this achieves derivation of the general
allometric law �3a�.

�iii� Finally, for a system that is biological, I−J is ex-
tremized with respect to the choice of a, which gives a
=n /4 �Eq. �25��. Using this in �14b� gives

f�x,a� = xn/4. �14c�

This is the biological allometric law �3b�. The approach �i�-
�iii� is now carried through.

B. Primary variation of the system function leads to a family
of power laws

The aim is to find the channel function f�x ,a� in the pres-
ence of a fixed source function pX�x�. Hence we first vary
f�x ,a�, by use of the calculus of variations, holding the func-
tion pX�x� constant. Conveniently, it will drop out during the
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variation. The Lagrangian for the problem is, by definition,
the integrand of �13�,

L = pX�x�� �

�a
ln g�x,a�	2

− pX�x�

m

Amj cos�4
ma� ,

j = 0,1,2,… , �15a�

where we introduced a new function g defined as

�f��x,a�� � g�x,a� . �15b�

In this way, the function g�x ,a� replaces f�x ,a� as the quan-
tity to vary in �15a�. Keeping in mind that the PDF pX�x� on
mass remains a fixed function during the variation, the La-
grangian �15a� is readily differentiated as

�L
���g/�a�

= 2 pX�x�
�g/�a

g2 and
�L
�g

= − 2 pX�x�
��g/�a�2

g3 ,

g � g�x,a� . �16�

Using these in the Euler-Lagrange equation �31�

�

�a
� �L

���g/�a�
� =

�L
�g

�17�

gives, after some trivial cancellation,

�

�a
� �g/�a

g2 	 = −
��g/�a�2

g3 , g � g�x,a� . �18�

Thus, the unknown PDF pX�x� has dropped out, as we antici-
pated above. Doing the indicated differentiation gives after
some algebra

g
�2g

�a2 − � �g

�a
�2

= 0. �19�

The general solution to this can be found by using g
�exp�k�, k�k�x ,a�, in Eq. �19�, and solving the resulting
differential equation for k. The answer is k=K�x�a+L�x�,
with K�x� ,L�x� arbitrary functions. Exponentiating back to g
gives an answer

g�x,a� = h�x�a−1, �20�

where h�x��exp�K�x�� is an arbitrary real function of x
called the “base function,” and we took L�x��−K�x�. The
latter choice gives the term −1 in the exponent of �20�, for
later numbering of the attributes �see also �v�, Sec. IV�. The
solution �20� may be readily shown to satisfy differential
equation �19�, keeping in mind that its derivatives are with
respect to a and not x.

Hence the solution to the problem has the general form of
a power law. That is, on the basis of optimal information
flow J→ I, nature generally acts to form power-law solutions
for the rate of change g�x ,a� of the channel function.

The general solution �20� contains a general base function
h�x� of the mass. This function will be found in Sec. IX.
Also, the values of the power �a−1� of h�x� to be used for
the biological laws are not yet fixed. These unknown powers
will next be fixed, as the second optimization step.

C. Variation of the attribute parameters gives powers aÆan

=n /4

Here, by premise �iii� of Sec. IV, we vary a for use in the
biological laws. (Note that this will not affect the general law
�3a� derivation since a so obtained �Eq. �25�� will not be
used in that derivation.) Since a is a discrete variable, ordi-
nary calculus is used, differentiating � /�a Eq. �13� and
equating the result to zero. This gives, after use of �15b�,

�

�a
� dx pX�x�� �g�x,a�/�a

g�x,a� 	2

−
�

�a�� dx pX�x�

m

Amjcos�4
ma�	 = 0,

j = 0,1,2… . �21�

The first derivative term in Eq. �21� is next shown to be
zero. Its derivative � /�a operation may be moved to within
the integrand, giving

�

�a
�ga

g
�2

, ga �
�g�x,a�

�a
. �22�

Carrying out the indicated derivative � /�a gives

2�ga

g
� �

�a
�ga

g
� = 2�ga

g
��ggaa − ga

2

g2 � = 0 �23�

by Eq. �19�. Equation �19� could be used since the biological
optimization requires the simultaneous satisfaction of both
conditions �17� and �21�.

We showed in the preceding paragraph that the left-hand
term in Eq. �21� becomes zero after the indicated differentia-
tion, that is, �I /�a=0. This has two important consequences.
First, as will be shown below, I then does not depend upon a
for the power-law solution �20�.

Second, only the right-hand term of �21� now remains. It
defines a problem

�

�a�pX�x�

m

Amjcos�4
ma�	
= − pX�x�


m

Amj�4
m�sin�4
ma� = 0, j = 0,1,2,… .

�24�

�Note that � cos�4
ma� /�a=−4
m sin�4
ma� within any
interval j.� For arbitrary coefficients Amj, the required zero is
obtained if and only if

a � an =
n

4
, n = 0, ± 1, ± 2, ± 3,… �25�

since then the sine function in Eq. �24� becomes sin�mn
�
=0 for all integers m ,n. Note that the solution values
�25� form in sequence for the different unit intervals j given
by �12c�. As examples: The interval for j=0 is
�−1/2 ,0� , �0,1 /2� and contains solution values �25� a=0,
±1/4 , ±2/4; the interval for j=1 is �−1,−1/2� , �1/2 ,1� and
contains solutions a= ±2/4 , ±3/4 , ±4/4; and so on, thereby
forming all solutions �25�.
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Result �25� shows that the attribute value a must be a
multiple of 1 /4, or the powers in the power law �20� are
multiples of 1/4. This is an important milestone in the bio-
logical derivation. We emphasize that it only could follow
because of the discrete nature of the sum over m, which
follows from the model assumption �i� �Sec. IV� that infor-
mation originates on the level of the discrete cells.

IX. SECONDARY EXTREMIZATION THROUGH CHOICE
OF h„x…

The solution �20� to the extremization problem �13� of I
−J=extremum was found to contain an arbitrary function
h�x�. Clearly the appropriate h�x� is the one that further ex-
tremizes I−J. We seek this function here. First we establish a
general property of h�x�.

A. Special form of function h„x…

Here we show that h�x� can be expressed as a linear term
in x plus a function that is at least quadratic in x. Function
h�x� can be generally expanded in Taylor series as

h�x� = b0 + b1x + b2x2 + b3x3 + ¯ . �26�

Differentiating Eq. �5�, then using Eq. �26� in Eqs. �15b� and
�20� gives, in sequence,

dynk

dx
= Cnk

df�x,an�
dx

= Cnkg�x,an�

= Cnkh�x�an−1

= Cnk�b0 + b1x + b2x2 + ¯ �an−1. �27�

Then

lim
x→0

dynk

dx
= Cnkb0

an−1 �
Cnk

b0
1−an

. �28�

We now use the model properties �4a� and �4b�. If an
�1, then limit �4a� holds. This can only be obeyed by Eq.
�28� if

b0 = 0. �29�

Consequently, by Eq. �26�, h�x�=b1x+b2x2+b3x3+¯ or

h�x� = b1x + �k�x��2, k�x� � x�b2 + b3x + ¯ �30�

for some function k�x�. By the square root operation in Eq.
�30�, the latter is in general either pure real or pure imaginary
at each x; it is found next.

B. Resulting variational principle in base function h„x…

Using definition �15b�, and Eq. �20� in Eq. �11�, gives an
information level

I = �� �

�a
ln�h�x�a−1�	2


= �� �

�a
�a − 1�ln h�x�	2


= �ln2 h�x�� �31�

after obvious algebra. Quantity a has dropped out.
The information difference I−J is to be extremized in a

total sense. The base function h�x� that defines I in Eq. �31�
has been expressed in terms of a new function k�x� �Eq.
�30��. Hence I−J must be further �secondarily� extremized
through variation of function k�x�. Using EPI result �30� in
�31�, and combining this with �12f� and �25�, gives a new
problem,

I − J = �ln2�b1x + k2�x��� − 

m

Amj�− 1�mn � extremum

�32�

in k�x�.

C. Secondary variational principle in associated function k„x…

Since the Am are independent of k�x�, the net Lagrangian
in Eq. �32� for varying k�x� is

L = pX�x�ln2�b1x + k2�x�� . �33�

Function pX�x� arises out of the expectation operation � � in
Eq. �32�, and is also independent of k�x�. The general Euler-
Lagrange equation for problem �33� is �31�

d

dx
� �L

�k��x�
� =

�L
�k�x�

, k��x� � dk/dx . �34�

Since L in Eq. �33� does not depend upon k��x�, the left-hand
side of Eq. �34� is zero. Also, differentiating �33� gives

�L
�k�x�

=
2 pX�x�ln�b1x + k2�x��

b1x + k2�x�
2k�x� � 0. �35�

Once again, pX�x� is merely a constant multiplier, dropping
out of the problem. Equation �35� has two formal solutions.

D. Result k„x…=0, giving base function h„x… proportional
to x

The first formal solution to Eq. �35� is

b1x + k2�x� � h�x� = 1, �36�

the middle identity by Eq. �30�. The second solution is

k�x� = 0. �37�

�Notice that this holds regardless of whether k�x� is pure real
or pure imaginary.�

However, one solution is readily eliminated. The candi-
date �36� when used in �31� gives I= ��ln 1�2�=0. This extre-
mum is the absolute minimum value possible for Fisher in-
formation. However, I=0 is rejected since then the observed
value y of the attribute would unrealistically provide no in-
formation about the attribute. Hence the solution �36� is re-
jected.

By comparison, the candidate �37� when used in �30�
gives

h�x� = b1x , �38�

and consequently
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I � Iextremum = ��ln�b1x��2� �39�

by Eq. �31�. Information �39� is generally nonzero, thereby
representing a subsidiary minimum, which makes sense on
the grounds that the observation must contain at least some
information. Hence the solution �37� and �38� is accepted.

E. Final allometric laws

We are now in a position to form the final allometric laws
�3a� and �3b� for, respectively, general and living systems.
Substituting the solution �38� into Eqs. �15b� and �20� gives
�f��x ,a��= �b1x�a−1 or

f��x,a� = ± �b1x�a−1. �40�

Indefinitely integrating gives

f�x,a� = ± b1
a−1� dxxa−1 � ± a� dxxa−1 �41�

for a suitably defined b1. An additive constant in �41� is taken
to be zero by asymptotic prior knowledge �4b�: In all at-
tribute parameter cases a	1, as x→0 it is required that the
attribute value ynk→0, and hence by Eq. �5� likewise
f�x ,a�→0. The integral �41� is directly evaluated as

f�x,a� = xa. �42�

We used the fact that the attribute values y are positive �Eqs.
�3a� and �3b�� in order to rule out the negative alternative.

The general allometric law �3a� is to hold for a priori
empirically defined powers an �see �iii�, Sec. IV�. Here the
specific powers �25� that held for optimization of I−J do not
apply. The solution is more simply the combination of Eqs.
�42� and �5�. Reinserting subscripts gives

ynk � Cnkf�x,an� = Ynkx
an so that Ynk � Cnk,

n = 0, ± 1, ± 2,… . �43�

This confirms the general allometric law �3a� for empirically
known an.

Next we turn to the biological allometric law, which is
modeled ��iii�, Sec. IV� to hold for the particular powers an
given by Eq. �25� that enforce a further extremization in the
problem �2�. Using powers �25� in the power-law solution
�42�, and also using �5�, gives

ynk � Cnkf�x,an� = Ynkx
n/4 so that Ynk � Cnk,

n = 0, ± 1, ± 2,… . �44�

This is the law �3b�. As contrasted with laws �43�, the powers
an are here purely multiples of 1 /4.

X. ALTERNATIVE MODEL �a=L

The preceding derivation assumed a priori a unit funda-
mental length �a=1 ��i�, Sec. IV�. A stronger derivation
would allow �a=L with L general. With �a=L, the half-unit
interval pairs in Sec. VII B are replaced with pairs of length
L /2. Also, Eqs. �12c�–�12g� now hold �31� under the replace-
ments j→ jL , �j+1�→ �j+1�L, and m→m /L. Consequently,

the requirement of zero for Eq. �24� now becomes one of
zero for sin�4
ma /L�. The solution is a�an=nL /4. Hence,
by Eq. �43� the biological power law is now ynk=Ynkx

nL/4

instead of Eq. �44�. Also, now a1=1�L /4=L /4. But by
model assumption �v� of Sec. IV, a1�1/4. It results that L
=1. Consequently, the quarter-power law �44� results once
again.

XI. SUMMARY

After introducing Fisher data information I in Sec. I, the
information is used in the EPI principle �2� of Sec. II. The
general allometric laws of science are discussed in Sec. III A,
a subset from biology is discussed in Sec. III B, and past
explanations of biological allometry are discussed in Sec.
III C. The limited scope of the EPI derivation is discussed in
Sec. III C. The prior knowledge assumed in the EPI deriva-
tion is given in Sec. IV. This includes the assumption that the
source information J originates at the level of discrete cells,
and propagates from there into measurement space. Also
used is specific limiting behavior of the allometric laws near
the origin. Caveats to the approach are discussed in Sec. V B
and below in Sec. XII. The rest of the paper is concerned
with deriving the allometric laws from these assumptions.
The derivation concurrently applies to both inanimate and
biological cases. A brief synopsis of the mathematics of the
approach is given in Sec. VIII A.

The detailed approach is given in Secs. VIII B, VIII C,
and IX A–IX E, with an alternative aspect addressed in
Sec. X.

XII. DISCUSSION

This paper has the limited aim �3c� of establishing neces-
sity for allometry. It shows that if a system obeys the model
of Sec. IV and also obeys EPI through variation of its chan-
nel function f�x ,a�, it must obey allometry. However, this
does not necessarily imply the converse—that any system
that obeys allometry must also obey EPI and the model.
�Note that this in fact might be true, but is regarded as out-
side the scope of the paper.� Also, not all systems obey al-
lometry. Then, by the necessity �3c� proven in this paper,
such systems do not obey the model of Sec. IV and/or EPI.

By the overall approach, the allometric laws �3a� and �3b�
follow as the effect of a flow of information J→ I from an
attribute source to an observer. We saw that the derivation for
general laws �3a� differs slightly from that for biological
laws �3b�. Each general law �3a� accomplishes an extremiza-
tion of the loss of information I−J through variation of the
system function f�x ,an� and its subfunctions h�x� and k�x�.
By comparison, the biological allometric laws �3b� accom-
plish the extremization with respect to both these functions
and the system parameters an. The extra optimization with
respect to the an reflects the specialized nature of biological
allometry. But, why should biological systems be so special-
ized?

The answer is that, as compared to nonliving systems,
biological systems have resulted from Darwinian evolution.
Thus, evolution is postulated ��iii�, Sec. IV� as selecting par-
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ticular attribute parameters an that optimize the information
flow loss I−J. The postulate is reasonable. Survival and pro-
liferation within an adaptive landscape favor optimization of
phenotypic traits which, in turn, confers maximal fitness on
the individual. Here the phenotype traits are, in fact, the at-
tribute parameters an. Therefore, the an will evolve into those
values that favor maximal fitness. Meanwhile, maximal fit-
ness has been shown �4,23� to result from optimal informa-
tion flow loss I−J=extremum. �The latter gives rise to the
Lotka-Volterra equations of growth which, in turn, imply
maximal fitness through “Fisher’s theorem of genetic
change.”� Therefore, it is reasonable that the same parameter
values an that satisfy evolution will also satisfy I−J
=extremum.

In a related derivation �24�, under the premise that in situ
cancer is likewise in an evolutionary extremized state—now
of transmitting minimal information about its age and size—
the EPI output result is the correct law of cancer growth,
again a power-law form �3a�. However, here x is the time and
an=1.618… is the Fibonacci golden mean. Also, as here, the
information is optimized with respect to the exponent an.
This is also further evidence that the premise ��iii�, Sec. IV�
of evolutionary efficiency is correct.

It was assumed as prior knowledge ��iv�, Sec. IV� that in
biological cases �3b� the independent variable x is the mass
of the organism. That is, laws �3b� are scaling laws covering
a range of sizes, where the sizes are specified uniquely by
mass values x. Aside from being a postulate of the deriva-
tion, this is reasonable on evolutionary grounds. By its na-
ture, the process of evolution favors systems that are close to
being optimized with respect to the energy �and information�
they distribute �9� to phenotypic traits at its various scales.
On this basis, only a dependence upon absolute size or mass
would remain.

The precise form of the biological function J�a� is un-
known. It is possible that it is periodic, repeating itself over
each fundamental interval j. This implies that all Amj =Am,
m=1,2 ,… irrespective of j. Interestingly, for such periodic-
ity J�a� breaks naturally into two classes. Back substituting
any one coefficient �25� into the Fourier representation �12f�
now gives

J�an� = J�n/4� = 

m

Am cos�mn
� = 

m

Am�− 1�mn. �45�

Since the Am remain arbitrary, this still represents an arbi-
trary information quantity J�an� for n=0 or 1. However, for
higher values of n, the form �45� repeats, giving

J�±a3� = J�±a5� = ¯ = J�±a1� �46a�

and

J�±a2� = J�±a4� = ¯ = J�±a0� . �46b�

Hence the odd-numbered attributes n= ±1, ±3, ±5,… all
share one fixed level of ground truth information J about
their values an, and the even-numbered attributes n=0,
±2, ±4, ±6,… share another. Consequently, the source in-
formation of the channel is specified by only two indepen-
dent values, �say� J�a0� and J�a1�. Or, the allometric relations
result from two basic sources of information. As we found,
the numerical values of the two information levels remain
arbitrary, since the coefficients Am are arbitrary.

Finally, it is worthwhile considering why biologically
there should be only two classes of information. The postu-
late �i� of Sec. IV that discrete cells are the sources of infor-
mation enters in once again. This ultimately gave rise to the
sum �12f� representing the source information J�a� for the
attribute. The sum is over the biological cells and, by Eqs.
�46a� and �46b�, there are only two independent information
sources. On this basis, each cell must provide two indepen-
dent sources of attribute information. The existence of two
such sources is, in fact, consistent with recent work �33�,
which concludes that cellular DNA and cellular transmem-
brane ion gradients are the sources.
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